Format

Send to

Choose Destination
See comment in PubMed Commons below
J Dent (Shiraz). 2013 Mar;14(1):13-9.

Flexural strength of glass and polyethylene fiber combined with three different composites.

Author information

  • 1Dept. of Operative Dentistry, Biomaterials Research Center, School of Dentistry, Shiraz University of Medial Sciences, Shiraz, Iran.
  • 2Dept. of Operative Dentistry, School of Dentistry, Shiraz University of Medial Sciences, Shiraz, Iran.

Abstract

STATEMENT OF PROBLEM:

The flexure of the fiber- reinforced composites (FRC) which can be generally used instead of fixed metal- framework prostheses have been more advocated due to the enormous demands for the conservative and esthetic restoration. The flexure of the fiber should be well-fitted to its covering composite. No study has been reported the comparison of the combination of glass and polyethylene fiber with particulate filled composite and fiber reinforced composite yet.

PURPOSE:

This study compared the flexural strength of two types of fibers combined with three types of composites.

MATERIALS AND METHOD:

Sixty-six specimens were prepared in a split mold (25×2×2 mm). The specimens were divided into six groups according to the type of resin and the fiber (N = 11): group 1: Z250 composite + Polyethylene fiber; group 2: Build It composite + Polyethylene fiber; group 3: Nulite F composite+ Polyethylene fiber; group 4: glass fiber + Z250 composite; group 5: glass fiber + Build-It composite and group 6: glass fiber + Nulite F. The mean flexural strengths (MPa) values were determined in a 3-point bending test at a crosshead speed of 1 mm/min by a universal testing machine (Zwick/Roell Z020, Germany). The results were statistically analyzed, using one and two- way ANOVA and LSD post-hoc tests (p< 0.05).

RESULTS:

The highest flexural strength was registered for glass fiber in combination with Z250 composite (500 MPa) and the lowest for polyethylene fiber in combination with Build-It composite (188 MPa). One-way ANOVA test revealed that there was no statistically significant difference between polyethylene fiber combinations (p= 0.62) but there was a significant difference between glass fiber combinations (p= 0.0001). Two-way ANOVA revealed that the fiber type had a significant effect on flexural strength (p= 0.0001).

CONCLUSION:

The choice of fiber and composite type was shown to have a significant positive influence on the flexural properties of the fiber-reinforced composite. Glass fiber has a significant influence on the flexural properties of directly- made specimens.

KEYWORDS:

Composite; Flexural Strength; Glass Fiber; Poly Ethylene Fiber

PMID:
24724111
PMCID:
PMC3927662
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center