Format

Send to

Choose Destination
Nature. 1989 Jun 15;339(6225):544-8.

Lymphocytes bearing antigen-specific gamma delta T-cell receptors accumulate in human infectious disease lesions.

Author information

1
Section of Dermatology, University of Southern California School of Medicine, Los Angeles 90033.

Abstract

The majority of T cells bear the T-cell receptor (TCR) alpha beta complex which recognizes foreign antigen peptides only in the context of self major histocompatibility complex (MHC) molecules. Such T cells function in a variety of effector roles and secrete cytokines that mediate the activation and differentiation of other cells in the immune system. Recently, a small subpopulation T cells was found to bear a distinct TCR composed of gamma and delta subunits. In man, TCR gamma delta+ cells are distributed as approximately 5 per cent of the CD3+ cells in all organized lymphoid organs as well as in the skin- and gut-associated lymphoid tissues. Although a limited number of germ-line genes encode the TCR gamma and delta subunits, extensive junctional variation particularly in the delta gene, results in unprecedented diversity for this receptor. The nature of the specificity and immunological functions of these T cells remains enigmatic. We report here that in contrast to the normal low frequency of gamma delta-bearing cells in lymphoid tissues, peripheral blood, or normal skin, the frequency is increased five to eightfold in particular granulomatous reactions of leprosy. TCR gamma delta+ lymphocyte lines from these leprosy skin lesions proliferate in vitro specifically to mycobacterial antigens. This reactivity to foreign antigens appears to require presentation in the context of self-molecules. Moreover, culture supernatants from activated gamma delta T lymphocytes induce adhesion and aggregation of bone-marrow monocytes in the presence of granulocyte monocyte-colony stimulating factor (CSF), suggesting that products of gamma delta-bearing T cells may play a role in the immune response, possibly by stimulating granuloma formation.

PMID:
2471938
DOI:
10.1038/339544a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center