Format

Send to

Choose Destination
See comment in PubMed Commons below
Food Chem Toxicol. 2014 Jul;69:1-12. doi: 10.1016/j.fct.2014.03.037. Epub 2014 Apr 5.

Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects.

Author information

1
National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China.
2
National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China.
3
National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
4
College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China.
5
College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China. Electronic address: gykai@shnu.edu.cn.
6
National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address: sjianxin@gmail.com.

Abstract

Acrylamide (AA) was firstly detected in food in 2002, and since then, studies on AA analysis, occurrence, formation, toxicity, risk assessment and mitigation have been extensively carried out, which have greatly advanced understanding of this particular biohazard at both academic and industrial levels. There is considerable variation in the levels of AA in different foods and different brands of the same food; therefore, so far, a general upper limit for AA in food is not available. In addition, the link of dietary AA to human cancer is still under debate, although AA has been known as a potential cause of various toxic effects including carcinogenic effects in experimental animals. Furthermore, the oxidized metabolite of AA, glycidamide (GA), is more toxic than AA. Both AA and GA can form adducts with protein, DNA, and hemoglobin, and some of those adducts can serve as biomarkers for AA exposure; their potential roles in the linking of AA to human cancer, reproductive defects or other diseases, however, are unclear. This review addresses the state-of-the-art understanding of AA, focusing on risk assessment, mechanism of formation and strategies of mitigation in foods. The potential application of omics to AA risk assessment is also discussed.

KEYWORDS:

Dietary acrylamide; Epidemiology; Maillard reaction; Omics; Risk analysis; Toxicology

PMID:
24713263
DOI:
10.1016/j.fct.2014.03.037
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center