Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2014 Apr 7;9(4):e93636. doi: 10.1371/journal.pone.0093636. eCollection 2014.

Suppression of graft regeneration, not ischemia/reperfusion injury, is the primary cause of small-for-size syndrome after partial liver transplantation in mice.

Author information

Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.



Ischemia/reperfusion injury (IRI) is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS) after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts.


Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by hepatic pathologic alterations, apoptosis and necrosis. Regeneration response was detected by mitotic index, BrdU incorporation and PCNA, Cyclin D1 and Cyclin E expression. The expression of mTOR, AKT, ERK, JNK2 and p70S6K, also involved in regeneration signaling pathways, were analyzed as well.


30% partial liver graft resulted in a significantly low 7-day survival rate (P = 0.002) with no marked difference in tissue injury compared with the 50% partial graft group. Serum alanine aminotransferase levels were not significantly different between partial transplantation and full-size transplantation. Western blot analysis of caspase-3 and TUNEL staining also indicated no significant difference in apoptosis response between 30% partial transplantation and half-size or full-size transplantation (P = 0.436, P = 0.113, respectively). However, liver regeneration response indicators, mitotic index (P<0.0001) and BrdU (P = 0.0022), were markedly lower in 30% LTx compared with 50% LTx. Suppressed expression of PCNA, cyclin D1, cyclin E, mTOR, JNK2, AKT, ERK and p70S6K was also detected by western blot.


Liver regeneration is markedly suppressed in SFSS, and is more likely the primary cause of SFSS, rather than ischemia/reperfusion injury. Therapy for recovering graft regeneration could be a potentially important strategy to reduce the incidence of SFSS.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center