Send to

Choose Destination
Environ Microbiol. 2014 Oct;16(10):3196-210. doi: 10.1111/1462-2920.12478. Epub 2014 May 15.

The nitrate-ammonifying and nosZ-carrying bacterium Bacillus vireti is a potent source and sink for nitric and nitrous oxide under high nitrate conditions.

Author information

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Ås, Norway.


Several Gram-positive bacteria carry genes for anaerobic reduction of NO3(-) via NO2(-) to NH4(+) or gaseous nitrogen compounds, but the processes are understudied for these organisms. Here, we present results from a whole-genome analysis of the soil bacterium Bacillus vireti and a phenotypic characterization of intermediate and end-products, formed under anoxic conditions in the presence of NO3(-). Bacillus vireti has a versatile metabolism. It produces acetate, formate, succinate and lactate from fermentation and performs dissimilatory nitrate reduction via NO2(-) to ammonium (DNRA) using NrfA, while NirB may detoxify NO2(-) in the cytoplasm. Moreover, it produces NO from an unknown source and reduces it via N2O to N2 using two enzymes connected to denitrification: an unusual NO reductase, qCuA Nor encoded by cbaA, and a z-type N2O reductase, encoded by nosZ. In batch cultures, B. vireti reduced all NO3(-) to NO2(-) before the NO2(-) was reduced further. The quantities of all products varied with the initial NO3(-) concentration. With 5 mM NO3(-) , 90% was reduced to NH4 (+) while with ≥ 20 mM NO3(-), 50% was reduced to NO, N2O and N2. This organism is thus an aggressive NO2(-) accumulator and may act as a net source and sink of NO and N2O.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center