Send to

Choose Destination
J Biol Chem. 1989 Jun 5;264(16):9283-8.

Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibition by dextran sulfate.

Author information

Laboratory of Structural Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.


A virulent strain of Mycoplasma pneumoniae was metabolically labeled with [3H]palmitate and studied for binding to glycolipids and to WiDr human colon adenocarcinoma cells. The organism binds strongly to sulfatide and other sulfated glycolipids, such as seminolipid and lactosylsulfatide which all contain terminal Gal(3SO4) beta 1-residues and weakly to some neolactoseries neutral glycolipids. M. pneumoniae do not bind gangliosides including the sialylneolacto-series and other neutral glycolipids that were tested. Only metabolically active M. pneumoniae cells bind to sulfatide, as binding is maximal in RPMI medium at 37 degrees C and almost completely abolished in nutrient-deficient medium or by keeping the cells at 4 degrees C. Dextran sulfate but not other sulfated or anionic polysaccharides at 10 micrograms/ml completely inhibits binding of M. pneumoniae to purified sulfatide. Dextran sulfate does not inhibit binding to the neolacto-series neutral glycolipids. Dextran sulfate partially inhibits adhesion of M. pneumoniae to cultured human colon adenocarcinoma cells (WiDr). The biological relevance of these data is suggested by our finding that sulfatide occurs in large amounts in human trachea, lung, and WiDr cells. Thus, there are at least two distinct receptors that mediate binding of M. pneumoniae to cells: glycolipids containing terminal Gal(3SO4) beta 1-residues as reported here, and glycoproteins containing terminal NeuAc alpha 2-3Gal beta 1-4GlcNAc sequences (Roberts, D. D., Olson, L. D., Barile, M. F., Ginsburg, V., and Krivan, H. C. (1989) J. Biol. Chem. 264, 9289-9293).

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center