Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Open. 2014 Apr 4;3(5):342-52. doi: 10.1242/bio.20147559.

Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease.

Author information

1
Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
2
Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA 23298, USA.
3
Signature Genomic Laboratories, Spokane, WA 99207, USA.
4
Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
5
Department of Biology, College of Charleston, Charleston, SC 29401, USA.
6
Department of Biology, University of Richmond, Richmond, VA 23173, USA.
7
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
8
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
9
Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA Molecular Biology and Genetics Program, Virginia Commonwealth University, Richmond, VA 23298, USA msgrotewiel@vcu.edu.

Abstract

Wolfram syndrome (WFS) is a progressive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. WFS1 and WFS2 are caused by recessive mutations in the genes Wolfram Syndrome 1 (WFS1) and CDGSH iron sulfur domain 2 (CISD2), respectively. To explore the function of CISD2, we performed genetic studies in flies with altered expression of its Drosophila orthologue, cisd2. Surprisingly, flies with strong ubiquitous RNAi-mediated knockdown of cisd2 had no obvious signs of altered life span, stress resistance, locomotor behavior or several other phenotypes. We subsequently found in a targeted genetic screen, however, that altered function of cisd2 modified the effects of overexpressing the fly orthologues of two lysosomal storage disease genes, palmitoyl-protein thioesterase 1 (PPT1 in humans, Ppt1 in flies) and ceroid-lipofuscinosis, neuronal 3 (CLN3 in humans, cln3 in flies), on eye morphology in flies. We also found that cln3 modified the effects of overexpressing Ppt1 in the eye and that overexpression of cln3 interacted with a loss of function mutation in cisd2 to disrupt locomotor ability in flies. Follow-up multi-species bioinformatic analyses suggested that a gene network centered on CISD2, PPT1 and CLN3 might impact disease through altered carbohydrate metabolism, protein folding and endopeptidase activity. Human genetic studies indicated that copy number variants (duplications and deletions) including CLN3, and possibly another gene in the CISD2/PPT1/CLN3 network, are over-represented in individuals with developmental delay. Our studies indicate that cisd2, Ppt1 and cln3 function in concert in flies, suggesting that CISD2, PPT1 and CLN3 might also function coordinately in humans. Further, our studies raise the possibility that WFS2 and some lysosomal storage disorders might be influenced by common mechanisms and that the underlying genes might have previously unappreciated effects on developmental delay.

KEYWORDS:

Copy number variants; Gene network; Genetic modifiers; Lysosomal storage disease; Neurodegeneration; RNA interference; Wolfram syndrome

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center