Send to

Choose Destination
See comment in PubMed Commons below
FEMS Yeast Res. 2014 Aug;14(5):708-13. doi: 10.1111/1567-1364.12155. Epub 2014 May 13.

Adaptation of Candida albicans to growth on sorbose via monosomy of chromosome 5 accompanied by duplication of another chromosome carrying a gene responsible for sorbose utilization.

Author information

Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA.


Candida albicans, a fungus that normally inhabits the digestive tract and other mucosal surfaces, can become a pathogen in immunocompromised individuals, causing severe or even fatal infection. Mechanisms by which C. albicans can evade commonly used antifungal agents are not fully understood. We are studying a model system involving growth of C. albicans on toxic sugar sorbose, which represses synthesis of cell wall glucan and, as a result, kills fungi in a manner similar to drugs from the echinocandins class. Adaptation to sorbose occurs predominantly due to reversible loss of one homolog of chromosome 5 (Ch5), which results in upregulation of the metabolic gene SOU1 (SOrbose Utilization) on Ch4. Here, we show that growth on sorbose due to Ch5 monosomy can involve a facultative trisomy of a hybrid Ch4/7 that serves to increase copy number of the SOU1 gene. This shows that control of expression of SOU1 can involve multiple mechanisms; in this case, negative regulation and increase in gene copy number operating simultaneously in cell.


aneuploidy; regulation; resistance

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center