Format

Send to

Choose Destination
Vasc Cell. 2014 Apr 1;6(1):7. doi: 10.1186/2045-824X-6-7.

Development of immortalized mouse aortic endothelial cell lines.

Author information

1
Wallace H, Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, 1760 Haygood Drive, Health Science Research Building, E-170, Atlanta, GA 30322, USA. hanjoong.jo@bme.gatech.edu.

Abstract

BACKGROUND:

The understanding of endothelial cell biology has been facilitated by the availability of primary endothelial cell cultures from a variety of sites and species; however, the isolation and maintenance of primary mouse aortic endothelial cells (MAECs) remain a formidable challenge. Culturing MAECs is difficult as they are prone to phenotypic drift during culture. Therefore, there is a need to have a dependable in vitro culture system, wherein the primary endothelial cells retain their properties and phenotypes.

METHODS:

Here, we developed an effective method to prepare immortalized MAEC (iMAEC) lines. Primary MAECs, initially isolated from aortic explants, were immortalized using a retrovirus expressing polyoma middle T-antigen. Immortalized cells were then incubated with DiI-acetylated-low density lipoprotein and sorted via flow cytometry to isolate iMAECs.

RESULTS:

iMAECs expressed common markers of endothelial cells, including PECAM1, eNOS, VE-cadherin, and von Willebrand Factor. iMAECs aligned in the direction of imposed laminar shear and retained the ability to form tubes. Using this method, we have generated iMAEC lines from wild-type and various genetically modified mice such as p47phox-/-, eNOS-/-, and caveolin-1-/-.

CONCLUSION:

In summary, generation of iMAEC lines from various genetically modified mouse lines provides an invaluable tool to study vascular biology and pathophysiology.

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center