Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Discov. 2014 Jun;4(6):730-43. doi: 10.1158/2159-8290.CD-13-0782. Epub 2014 Mar 31.

Human and mouse VEGFA-amplified hepatocellular carcinomas are highly sensitive to sorafenib treatment.

Author information

1
Authors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
2
Authors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, GermanyAuthors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
3
Authors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, GermanyAuthors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, GermanyAuthors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University
4
Authors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany peli@hadassah.org.il yinonb@ekmd.huji.ac.il.
5
Authors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, GermanyAuthors' Affiliations:The Lautenberg Center for Immunology; Department of Developmental Biology and Cancer Research, IMRIC, Hadassah Medical School, Hebrew University;Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem; Liver Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pathology, University Hospital Basel, Basel, Switzerland; Division of Signal Transduction and Growth Control (A100), Division of Molecular Genetics (B060), and Junior Group Molecular Mechanisms of Head and Neck Tumors (A102), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; Institute of Pathology, University Hospital Heidelberg; Departments of Otolaryngology, Head and Neck Surgery and Internal Medicine, University Hospital Heidelberg, Heidelberg; and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany peli@hadassah.org.il yinonb@ekmd.huji.ac.il.

Abstract

Death rates from hepatocellular carcinoma (HCC) are steadily increasing, yet therapeutic options for advanced HCC are limited. We identify a subset of mouse and human HCCs harboring VEGFA genomic amplification, displaying distinct biologic characteristics. Unlike common tumor amplifications, this one seems to work via heterotypic paracrine interactions; stromal VEGF receptors (VEGFR), responding to tumor VEGF-A, produce hepatocyte growth factor (HGF) that reciprocally affects tumor cells. VEGF-A inhibition results in HGF downregulation and reduced proliferation, specifically in amplicon-positive mouse HCCs. Sorafenib-the first-line drug in advanced HCC-targets multiple kinases, including VEGFRs, but has only an overall mild beneficial effect. We found that VEGFA amplification specifies mouse and human HCCs that are distinctly sensitive to sorafenib. FISH analysis of a retrospective patient cohort showed markedly improved survival of sorafenib-treated patients with VEGFA-amplified HCCs, suggesting that VEGFA amplification is a potential biomarker for HCC response to VEGF-A-blocking drugs.

SIGNIFICANCE:

Using a mouse model of inflammation-driven cancer, we identified a subclass of HCC carrying VEGFA amplification, which is particularly sensitive to VEGF-A inhibition. We found that a similar amplification in human HCC identifies patients who favorably responded to sorafenib-the first-line treatment of advanced HCC-which has an overall moderate therapeutic efficacy.

PMID:
24687604
DOI:
10.1158/2159-8290.CD-13-0782
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center