Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2014 Mar 27;157(1):151-61. doi: 10.1016/j.cell.2014.02.039.

Integrating biological redesign: where synthetic biology came from and where it needs to go.

Author information

  • 1Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02115, USA.
  • 3Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA.
  • 4Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address: pamela_silver@hms.harvard.edu.

Abstract

Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering.

PMID:
24679533
DOI:
10.1016/j.cell.2014.02.039
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center