Format

Send to

Choose Destination
See comment in PubMed Commons below
Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4608-13. doi: 10.1002/anie.201310612. Epub 2014 Mar 25.

Gas-phase synthesis of the benzyl radical (C(6)H(5)CH(2)).

Author information

1
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (USA) http://www.chem.hawaii.edu/Bil301/welcome.html.

Abstract

Dicarbon (C2 ), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas-phase synthesis is presented of the benzyl radical (C6 H5 CH2 ) by the crossed molecular beam reaction of dicarbon, C2 (X(1) Σg (+) , a(3) Πu ), with 2-methyl-1,3-butadiene (isoprene; C5 H8 ; X(1) A') accessing the triplet and singlet C7 H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon-carbon double bond of the 2-methyl-1,3-butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7 H7 radical species through atomic hydrogen elimination. The benzyl radical (C6 H5 CH2 ), the thermodynamically most stable C7 H7 isomer, is determined as the major product.

KEYWORDS:

benzyl radical; bimolecular reactions; combustion chemistry; gas-phase chemistry; reaction dynamics

PMID:
24668925
DOI:
10.1002/anie.201310612
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center