The engineering of artificial cellular nanosystems using synthetic biology approaches

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Jul-Aug;6(4):369-83. doi: 10.1002/wnan.1265. Epub 2014 Mar 25.

Abstract

Artificial cellular systems are minimal systems that mimic certain properties of natural cells, including signaling pathways, membranes, and metabolic pathways. These artificial cells (or protocells) can be constructed following a synthetic biology approach by assembling biomembranes, synthetic gene circuits, and cell-free expression systems. As artificial cells are built from bottom-up using minimal and a defined number of components, they are more amenable to predictive mathematical modeling and engineered controls when compared with natural cells. Indeed, artificial cells have been implemented as drug delivery machineries and in situ protein expression systems. Furthermore, artificial cells have been used as biomimetic systems to unveil new insights into functions of natural cells, which are otherwise difficult to investigate owing to their inherent complexity. It is our vision that the development of artificial cells would bring forth parallel advancements in synthetic biology, cell-free systems, and in vitro systems biology. For further resources related to this article, please visit the WIREs website. Conflict of interests: The authors declare that they have no competing financial interests.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Artificial Cells / chemistry*
  • Biomimetics*
  • Synthetic Biology / trends*