Format

Send to

Choose Destination
Endocrine. 2015 Feb;48(1):152-63. doi: 10.1007/s12020-014-0233-y. Epub 2014 Mar 20.

IL-15 expression increased in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats.

Author information

1
School of P.E. and Sports Science, Beijing Normal University, Beijing, 100875, China.

Abstract

Interleukin 15 (IL-15) has recently been proposed as a circulating myokine involved in glucose uptake and utilization in skeletal muscle. However, the role and mechanism of IL-15 in exercise improving insulin resistance (IR) is unclear. Here, we investigated the alteration in expression of IL-15 and IL-15 receptor α (IL-15Rα) in skeletal muscle during treadmill running in rats with IR induced by a high-fat diet (HFD) and elucidated the mechanism of the anti-IR effects of IL-15. At 20 weeks of HFD, rats showed severe IR, with increased levels of fasting blood sugar and plasma insulin, impaired glucose tolerance, and reduced glucose transport activity. IL-15 immunoreactivity and mRNA level in gastrocnemius muscle were decreased markedly as compared with controls. IL-15Rα protein and mRNA levels in both soleus and gastrocnemius muscle were significantly decreased, which might attenuate the signaling or secretion of IL-15 in muscle. Eight-week treadmill running completely ameliorated HFD-induced IR and reversed the downregulated level of IL-15 and IL-15Rα in skeletal muscle of HFD-fed rats. To investigate whether IL-15 exerts its anti-IR effects directly in muscle, we pre-incubated muscle strips with the endoplasmic reticulum stress (ERS) inducer dithiothreitol (DTT) or tunicamycin (Tm); IL-15 treatment markedly decreased the protein expression of the ERS markers 78-kDa glucose-regulated protein, 94-kDa glucose-regulated protein and C/EBP homologous protein and inhibited ERS induced by DTT or Tm. Therefore, treadmill running promoted skeletal IL-15 and IL-15Rα expression in HFD-induced IR in rats. The inhibitory effect of IL-15 on ERS may be involved in improved insulin sensitivity with exercise training.

PMID:
24647688
DOI:
10.1007/s12020-014-0233-y
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center