Format

Send to

Choose Destination
Nature. 2014 Mar 20;507(7492):329-34. doi: 10.1038/nature13147. Epub 2014 Mar 12.

Unexpected link between an antibiotic, pannexin channels and apoptosis.

Author information

1
1] The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA [3] Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA [4] La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
2
Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
3
1] The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA [3] Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.

Abstract

Plasma membrane pannexin 1 channels (PANX1) release nucleotide find-me signals from apoptotic cells to attract phagocytes. Here we show that the quinolone antibiotic trovafloxacin is a novel PANX1 inhibitor, by using a small-molecule screen. Although quinolones are widely used to treat bacterial infections, some quinolones have unexplained side effects, including deaths among children. PANX1 is a direct target of trovafloxacin at drug concentrations seen in human plasma, and its inhibition led to dysregulated fragmentation of apoptotic cells. Genetic loss of PANX1 phenocopied trovafloxacin effects, revealing a non-redundant role for pannexin channels in regulating cellular disassembly during apoptosis. Increase in drug-resistant bacteria worldwide and the dearth of new antibiotics is a major human health challenge. Comparing different quinolone antibiotics suggests that certain structural features may contribute to PANX1 blockade. These data identify a novel linkage between an antibiotic, pannexin channels and cellular integrity, and suggest that re-engineering certain quinolones might help develop newer antibacterials.

PMID:
24646995
PMCID:
PMC4078991
DOI:
10.1038/nature13147
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center