Send to

Choose Destination
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4838-43. doi: 10.1073/pnas.1321321111. Epub 2014 Mar 17.

Programmable bacteria detect and record an environmental signal in the mammalian gut.

Author information

Department of Systems Biology, Harvard Medical School, Boston, MA 02115.


The mammalian gut is a dynamic community of symbiotic microbes that interact with the host to impact health, disease, and metabolism. We constructed engineered bacteria that survive in the mammalian gut and sense, remember, and report on their experiences. Based on previous genetic memory systems, we constructed a two-part system with a "trigger element" in which the lambda Cro gene is transcribed from a tetracycline-inducible promoter, and a "memory element" derived from the cI/Cro region of phage lambda. The memory element has an extremely stable cI state and a Cro state that is stable for many cell divisions. When Escherichia coli bearing the memory system are administered to mice treated with anhydrotetracycline, the recovered bacteria all have switched to the Cro state, whereas those administered to untreated mice remain in the cI state. The trigger and memory elements were transferred from E. coli K12 to a newly isolated murine E. coli strain; the stability and switching properties of the memory element were essentially identical in vitro and during passage through mice, but the engineered murine E. coli was more stably established in the mouse gut. This work lays a foundation for the use of synthetic genetic circuits as monitoring systems in complex, ill-defined environments, and may lead to the development of living diagnostics and therapeutics.


genetic switch; synthetic biology

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center