Format

Send to

Choose Destination
J Biol Chem. 2014 May 2;289(18):12908-21. doi: 10.1074/jbc.M114.556738. Epub 2014 Mar 14.

Transcription factor SOX9 plays a key role in the regulation of visual cycle gene expression in the retinal pigment epithelium.

Author information

1
From the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.

Abstract

The retinal pigment epithelium (RPE) performs specialized functions to support retinal photoreceptors, including regeneration of the visual chromophore. Enzymes and carrier proteins in the visual cycle function sequentially to regenerate and continuously supply 11-cis-retinal to retinal photoreceptor cells. However, it is unknown how the expression of the visual cycle genes is coordinated at the transcriptional level. Here, we show that the proximal upstream regions of six visual cycle genes contain chromatin-accessible sex-determining region Y box (SOX) binding sites, that SOX9 and LIM homeobox 2 (LHX2) are coexpressed in the nuclei of mature RPE cells, and that SOX9 acts synergistically with orthodenticle homeobox 2 (OTX2) to activate the RPE65 and retinaldehyde binding protein 1 (RLBP1) promoters and acts synergistically with LHX2 to activate the retinal G protein-coupled receptor (RGR) promoter. ChIP reveals that SOX9 and OTX2 bind to the promoter regions of RPE65, RLBP1, and RGR and that LHX2 binds to those of RPE65 and RGR in bovine RPE. ChIP with human fetal RPE cells shows that SOX9 and OTX2 also bind to the human RPE65, RLBP1, and RGR promoters. Conditional inactivation of Sox9 in mouse RPE results in reduced expression of several visual cycle genes, most dramatically Rpe65 and Rgr. Furthermore, bioinformatic analysis predicts that multiple common microRNAs (miRNAs) regulate visual cycle genes, and cotransfection of miRNA mimics with luciferase reporter constructs validated some of the predicted miRNAs. These results implicate SOX9 as a key regulator of visual cycle genes, reveal for the first time the functional role of LHX2 in the RPE, and suggest the possible regulation of visual cycle genes by common miRNAs.

KEYWORDS:

Eye; Gene Expression; Gene Regulation; MicroRNA; Retinal Pigment Epithelium; SOX9; Transcription; Visual Cycle

PMID:
24634209
PMCID:
PMC4007478
DOI:
10.1074/jbc.M114.556738
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center