Format

Send to

Choose Destination
See comment in PubMed Commons below
Behav Brain Res. 2014 Jun 1;266:161-8. doi: 10.1016/j.bbr.2014.03.007. Epub 2014 Mar 12.

Mongolian gerbils learn to navigate in complex virtual spaces.

Author information

1
Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. Electronic address: thurley@bio.lmu.de.
2
Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
3
Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.

Abstract

Virtual reality (VR) environments are increasingly used to study spatial navigation in rodents. So far behavioral paradigms in virtual realities have been limited to linear tracks or open fields. However, little is known whether rodents can learn to navigate in more complex virtual spaces. We used a VR setup with a spherical treadmill but no head-fixation, which permits animals not only to move in a virtual environment but also to freely rotate around their vertical body axis. We trained Mongolian gerbils to perform spatial tasks in virtual mazes of different complexity. Initially the animals learned to run back and forth between the two ends of a virtual linear track for food reward. Performance, measured as path length and running time between the virtual reward locations, improved to asymptotic performance within about five training sessions. When more complex mazes were presented after this training epoch, the animals generalized and explored the new environments already at their first exposure. In a final experiment, the animals also learned to perform a two-alternative forced choice task in a virtual Y-maze. Our data thus shows that gerbils can be trained to solve spatial tasks in virtual mazes and that this behavior can be used as a readout for psychophysical measurements.

KEYWORDS:

Mongolian gerbil; Spatial learning; Spatial navigation; Virtual reality

PMID:
24631394
DOI:
10.1016/j.bbr.2014.03.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center