Send to

Choose Destination
Neurol Res. 2014 Jul;36(7):607-14. doi: 10.1179/1743132813Y.0000000308. Epub 2014 Jan 12.

Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure.



To compare the diagnostic reliability of optic nerve sheath diameter (ONSD) ultrasonography with a transcranial Doppler (TCD)-based absolute intracranial pressure (ICP) value measurement method for detection of elevated ICP in neurological patients. The ONSD method has been only tested previously on neurosurgical patients.


A prospective clinical study of a non-invasive ICP estimation method based on ONSD correlation with ICP and an absolute ICP value measurement method based on a two-depth TCD technology has recruited 108 neurological patients. Ninety-two of these patients have been enrolled in the final analysis of the diagnostic reliability of ONSD ultrasonography and 85 patients using the absolute ICP value measurement method. All non-invasive ICP measurements were compared with 'Gold Standard' invasive cerebrospinal fluid (CSF) pressure measurements obtained by lumbar puncture. Receiver-operating characteristic (ROC) analysis has been used to investigate the diagnostic value of these two methods.


The diagnostic sensitivity, specificity, and the area under the ROC curve (AUC) of the ONSD method for detecting elevated intracranial pressure (ICP >14·7 mmHg) were calculated using a cutoff point of ONSD at 5·0 mm and found to be 37·0%, 58·5%, and 0·57, respectively. The diagnostic sensitivity, specificity, and AUC for the non-invasive absolute ICP measurement method were calculated at the same ICP cutoff point of 14·7 mmHg and were determined to be 68·0%, 84·3%, and 0·87, respectively.


The non-invasive ICP measurement method based on two-depth TCD technology has a better diagnostic reliability on neurological patients than the ONSD method when expressed by the sensitivity and specificity for detecting elevated ICP >14·7 mmHg.


Absolute intracranial pressure,; Diagnostic reliability,; Doppler technology,; Non-invasive measurement,; Optic nerve sheath diameter

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center