Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pathol. 2014 Jul;233(3):269-80. doi: 10.1002/path.4350. Epub 2014 May 12.

RhoA activation by CNFy restores cell-cell adhesion in kindlin-2-deficient keratinocytes.

Author information

1
Department of Dermatology, Medical Centre-University of Freiburg, Germany.

Abstract

Kindlins are a family of integrin adapter and cell-matrix adhesion proteins causally linked to human genetic disorders. Kindlin-2 is a ubiquitously expressed protein with manifold functions and interactions. The contribution of kindlin-2 to integrin-based cell-matrix adhesions has been extensively explored, while other integrin-independent roles emerge. Because of the early involvement of kindlin-2 in development, no viable animal models with its constitutional knockout are available to study its physiological functions in adult skin. Here, we uncovered a critical physiological role of kindlin-2 in the epidermis by using a skin-equivalent model with shRNA-mediated knock-down of kindlin-2 in keratinocytes. Kindlin-2-deficient keratinocytes built stratified epidermal layers, but displayed impaired dermal-epidermal and intra-epidermal adhesion and barrier function. Co-immunoprecipitation studies demonstrated that kindlin-2 interacts with both integrin- and cadherin-based adhesions. In kindlin-2-deficient keratinocytes, reduced cell-cell adhesion was associated with abnormal cytoplasmic distribution of adherens junctions and desmosomal proteins, which was dependent on RhoA activation. Direct activation of RhoA with recombinant bacterial cytotoxic necrotizing factor y (CNFy) reverted the abnormal phenotype and barrier function of kindlin-2-deficient keratinocytes and skin equivalents. These findings have physiological and pathological significance, since kindlin-2 expression modulates the phenotype in Kindler syndrome, a skin fragility disorder caused by kindlin-1 deficiency. Our results suggest that pharmacological regulation of RhoGTPase activity may represent a therapeutic option for skin fragility.

KEYWORDS:

actin; blistering; epidermal adhesion; epidermal barrier; integrin

PMID:
24615351
DOI:
10.1002/path.4350
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center