Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions

PLoS One. 2014 Mar 7;9(3):e90038. doi: 10.1371/journal.pone.0090038. eCollection 2014.

Abstract

The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Convection*
  • Friction
  • Models, Theoretical
  • Radiation
  • Solutions / chemistry*
  • Temperature

Substances

  • Solutions

Grants and funding

This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number 26-130-35 Hi Ci. The authors, therefore, acknowledge with thanks DSR technical and financial support. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.