Format

Send to

Choose Destination
Brain. 2014 May;137(Pt 5):1429-38. doi: 10.1093/brain/awu042. Epub 2014 Mar 4.

Seizure burden is independently associated with short term outcome in critically ill children.

Author information

1
1 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, M5G 1X8, Canada.

Abstract

Seizures are common among critically ill children, but their relationship to outcome remains unclear. We sought to quantify the relationship between electrographic seizure burden and short-term neurological outcome, while controlling for diagnosis and illness severity. Furthermore, we sought to determine whether there is a seizure burden threshold above which there is an increased probability of neurological decline. We prospectively evaluated all infants and children admitted to our paediatric and cardiac intensive care units who underwent clinically ordered continuous video-electroencephalography monitoring over a 3-year period. Seizure burden was quantified by calculating the maximum percentage of any hour that was occupied by electrographic seizures. Outcome measures included neurological decline, defined as a worsening Paediatric Cerebral Performance Category score between hospital admission and discharge, and in-hospital mortality. Two hundred and fifty-nine subjects were evaluated (51% male) with a median age of 2.2 years (interquartile range: 0.3 days-9.7 years). The median duration of continuous video-electroencephalography monitoring was 37 h (interquartile range: 21-56 h). Seizures occurred in 93 subjects (36%, 95% confidence interval = 30-42%), with 23 (9%, 95% confidence interval = 5-12%) experiencing status epilepticus. Neurological decline was observed in 174 subjects (67%), who had a mean maximum seizure burden of 15.7% per hour, compared to 1.8% per hour for those without neurological decline (P < 0.0001). Above a maximum seizure burden threshold of 20% per hour (12 min), both the probability and magnitude of neurological decline rose sharply (P < 0.0001) across all diagnostic categories. On multivariable analysis adjusting for diagnosis and illness severity, the odds of neurological decline increased by 1.13 (95% confidence interval = 1.05-1.21, P = 0.0016) for every 1% increase in maximum hourly seizure burden. Seizure burden was not associated with mortality (odds ratio: 1.003, 95% confidence interval: 0.99-1.02, P = 0.613). We conclude that in this cohort of critically ill children, increasing seizure burden was independently associated with a greater probability and magnitude of neurological decline. Our observation that a seizure burden of more than 12 min in a given hour was strongly associated with neurological decline suggests that early antiepileptic drug management is warranted in this population, and identifies this seizure burden threshold as a potential therapeutic target. These findings support the hypothesis that electrographic seizures independently contribute to brain injury and worsen outcome. Our results motivate and inform the design of future studies to determine whether more aggressive seizure treatment can improve outcome.

KEYWORDS:

child; continuous video-EEG monitoring; critical illness; outcome; seizure burden

PMID:
24595203
PMCID:
PMC3999716
DOI:
10.1093/brain/awu042
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center