Send to

Choose Destination
See comment in PubMed Commons below
Rev Sci Instrum. 2014 Feb;85(2):02A961. doi: 10.1063/1.4854896.

Production of high intensity 48Ca for the 88-Inch Cyclotron and other updates.

Author information

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Mevion Medical Systems, 300 Foster St., Littleton, Massachusetts 01460, USA.


Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity (48)Ca(11+) beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of (48)Ca(11+) beam current was impressive. The consumption of (48)Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of (48)Ca(11+), with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center