Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2014 Apr 1;192(7):3409-18. doi: 10.4049/jimmunol.1302436. Epub 2014 Mar 3.

NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury.

Author information

1
Department of Medicine, Yale University School of Medicine, New Haven, CT 06520;

Abstract

Polymorphisms in NOD2 confer risk for Crohn's disease, characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well understood. Anti-CD3 mAb administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8(+) T cells. This requirement was associated with a critical role for NOD2 in SI CD8(+) T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and nonhematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages, and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8(+) T cell depletion, or IFN-γ neutralization each inhibited SI CD8(+) T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus, NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8(+) T cell migration during T cell activation, which, in turn, contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment.

PMID:
24591373
PMCID:
PMC4064676
DOI:
10.4049/jimmunol.1302436
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center