Send to

Choose Destination
Arch Virol. 2014 Aug;159(8):1975-86. doi: 10.1007/s00705-014-2028-0. Epub 2014 Mar 4.

Rhodiola inhibits dengue virus multiplication by inducing innate immune response genes RIG-I, MDA5 and ISG in human monocytes.

Author information

Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.


Recognition of virus infection by retinoic acid-inducible gene (RIG) I and melanoma differentiation-associated protein (MDA) 5, which are RNA helicases, and interferon-stimulated gene (ISG) 15 activates cascades of signal transduction pathways leading to production of type I interferons and proinflammatory cytokines that orchestrate the elimination of the viruses. However, it has been demonstrated that RNA-helicase-mediated innate immunity plays an essential role in defending the host from infection. In our efforts to identify plant-derived antivirals that selectively enhance ISG- and RNA-helicase-mediated antiviral immune responses, we identified a plant, rhodiola, that significantly promoted ISG, RIG-I and MDA 5 gene expression and an antiviral immune response against dengue virus (DENV) infection. Rhodiola induced interferon (IFN) β and other cytokines, including IL-1β, TNF-α, IL-6 and IL-8, in infected cells. It was also found that rhodiola upregulated phosphorylated eIF-2α, PKR and NF-kB in infected cells. In addition, the number of NK cells was also increased by rhodiola treatment in dengue-virus-infected human PBMCs. Treatment with a crude extract of rhodiola (RAE) resulted in effects in the 20 % range, which is similar to the magnitude of the same effects observed in DENV infections. Taken together, our results imply that rhodiola induces pharmacological modulation of RIG-I, MDA 5 and ISG signal transduction pathways in favor of the induction of a beneficial antiviral immune response against dengue virus, which can be a novel therapeutic strategy for management of infection.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center