Format

Send to

Choose Destination
See comment in PubMed Commons below
Arterioscler Thromb Vasc Biol. 2014 May;34(5):1032-44. doi: 10.1161/ATVBAHA.114.303450. Epub 2014 Feb 27.

Gene deletion of protein tyrosine phosphatase 1B protects against sepsis-induced cardiovascular dysfunction and mortality.

Author information

1
From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., V.R., F.T.); University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France (D.C., E.D., P.M., S.R., I.R.-J., E.G., J.-P.H., J.-C.d.R., V.R., F.T.); EA 4484 and Department of Physiology, Faculty of Medicine, University of Lille, Lille, France (R.N., X.M., D.M.); Intensive Care Unit, University Hospital, Rouen, France (F.T.); and Platform of Behavioural Analysis (SCAC), Faculty of Medicine, Rouen, France (J.-C.d.R.).

Abstract

OBJECTIVE:

Cardiovascular dysfunction is a major cause of mortality in patients with sepsis. Recently, we showed that gene deletion or pharmacological inhibition of protein tyrosine phosphatase 1B (PTP1B) improves endothelial dysfunction and reduces the severity of experimental heart failure. However, the cardiovascular effect of PTP1B invalidation in sepsis is unknown. Thus, we explored the beneficial therapeutic effect of PTP1B gene deletion on lipopolysaccharide (LPS)-induced cardiovascular dysfunction, inflammation, and mortality.

APPROACH AND RESULTS:

PTP1B(-/-) or wild-type mice received LPS (15 mg/kg) or vehicle followed by subcutaneous fluid resuscitation (saline, 30 mL/kg). α-1-dependent constriction and endothelium-dependent dilatation, assessed on isolated perfused mesenteric arteries, were impaired 8 hours after LPS and significantly improved in PTP1B(-/-) mice. This was associated with reduced vascular expression of interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, cyclooxygenase-2, and inducible nitric oxide synthase mRNA. PTP1B gene deletion also limited LPS-induced cardiac dysfunction assessed by echocardiography, left ventricular pressure-volume curves, and in isolated perfused hearts. PTP1B(-/-) mice also displayed reduced LPS-induced cardiac expression of tumor necrosis factor-α, interleukin1-β, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and Gp91phox, as well as of several markers of cellular infiltration. PTP1B deficiency also reduced cardiac P38 and extracellular signal-regulated protein kinase 1 and 2 phosphorylation and increased phospholamban phosphorylation. Finally, PTP1B(-/-) mice displayed a markedly reduced LPS-induced mortality, an effect also observed using a pharmacological PTP1B inhibitor. PTP1B deletion also improved survival in a cecal ligation puncture model of sepsis.

CONCLUSIONS:

PTP1B gene deletion protects against septic shock-induced cardiovascular dysfunction and mortality, and this may be the result of the profound reduction of cardiovascular inflammation. PTP1B is an attractive target for the treatment of sepsis.

KEYWORDS:

inflammation; nitric oxide synthase type III

PMID:
24578383
DOI:
10.1161/ATVBAHA.114.303450
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center