Send to

Choose Destination
Nat Commun. 2014 Feb 28;5:3298. doi: 10.1038/ncomms4298.

Quantitative bounds on morphodynamics and implications for reading the sedimentary record.

Author information

Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd., MC 170-25, Pasadena, California 91125, USA.
Department of Geology and Geophysics, University of Wyoming, 100 E. University Avenue, Dept. 3006, Laramie, Wyoming 82071, USA.


Sedimentary rocks are the archives of environmental conditions and ancient planetary surface processes that led to their formation. Reconstructions of Earth's past surface behaviour from the physical sedimentary record remain controversial, however, in part because we lack a quantitative framework to deconvolve internal dynamics of sediment-transport systems from environmental signal preservation. Internal dynamics of landscapes--a consequence of the coupling between bed topography, sediment transport and flow dynamics (morphodynamics)--result in regular and quasiperiodic landforms that abound on the Earth and other planets. Here, using theory and a data compilation of morphodynamic landforms that span a wide range of terrestrial, marine and planetary depositional systems, we show that the advection length for settling sediment sets bounds on the scales over which internal landscape dynamics operate. These bounds provide a universal palaeohydraulic reconstruction tool on planetary surfaces and allow for quantitative identification of depositional systems that may preserve tectonic, climatic and anthropogenic signals.


Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center