Format

Send to

Choose Destination
Stem Cells Dev. 2014 Jul 1;23(13):1535-47. doi: 10.1089/scd.2013.0442. Epub 2014 Apr 3.

Engineering of midbrain organoids containing long-lived dopaminergic neurons.

Author information

1
1 Department of Pathology and Immunology, University Medical Center, University of Geneva , Geneva, Switzerland .

Abstract

The possibility to generate dopaminergic (DA) neurons from pluripotent stem cells represents an unlimited source of material for tissue engineering and cell therapy for neurodegenerative disease. We set up a protocol based on the generation of size-calibrated neurospheres for a rapid production (3 weeks) of a high amount of DA neurons (>60%) oriented toward a midbrain-like phenotype, characterized by the expression of FOXA2, LMX1A, tyrosine hydroxylase (TH), NURR1, and EN1. By using γ-secretase inhibitors and varying culture time of neurospheres, we controlled maturation and cellular composition of a three-dimensional (3D) engineered nervous tissue (ENT). ENT contained neurons and glial cells expressing various markers of maturity, such as synaptophysin, neuronal nuclei-specific protein (NeuN), and glial fibrillary acidic protein (GFAP), and were electrophysiologically active. We found that 3-week-old neurospheres were optimal to generate 3D tissue containing DA neurons with typical A9 morphology. ENT generated from 4-week-old neurospheres launched glial cell type since astrocytes and myelin could be detected massively at the expense of TH-immunoreactive neurons. All γ-secretase inhibitors were not equivalent; compound E was more efficient than DAPT in generating DA neurons. This DA tissue provides a tool for drug screening, and toxicology. It should also become a useful biomaterial for studies on Parkinson's disease.

PMID:
24576173
DOI:
10.1089/scd.2013.0442
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center