Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Neurobiol. 2014 Aug;50(1):6-14. doi: 10.1007/s12035-014-8662-4. Epub 2014 Feb 27.

Role of cytosolic phospholipase A2 in oxidative and inflammatory signaling pathways in different cell types in the central nervous system.

Author information

1
Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA, sung@missouri.edu.

Abstract

Phospholipases A(2) (PLA(2)s) are important enzymes for the metabolism of fatty acids in membrane phospholipids. Among the three major classes of PLA(2)s in the mammalian system, the group IV calcium-dependent cytosolic PLA(2) alpha (cPLA(2)α) has received the most attention because it is widely expressed in nearly all mammalian cells and its active participation in cell metabolism. Besides Ca(2+) binding to its C2 domain, this enzyme can undergo a number of cell-specific post-translational modifications, including phosphorylation by protein kinases, S-nitrosylation through interaction with nitric oxide (NO), as well as interaction with other proteins and lipid molecules. Hydrolysis of phospholipids by cPLA(2) yields two important lipid mediators, arachidonic acid (AA) and lysophospholipids. While AA is known to serve as a substrate for cyclooxygenases and lipoxygenases, which are enzymes for the synthesis of eicosanoids and leukotrienes, lysophospholipids are known to possess detergent-like properties capable of altering microdomains of cell membranes. An important feature of cPLA(2) is its link to cell surface receptors that stimulate signaling pathways associated with activation of protein kinases and production of reactive oxygen species (ROS). In the central nervous system (CNS), cPLA(2) activation has been implicated in neuronal excitation, synaptic secretion, apoptosis, cell-cell interaction, cognitive and behavioral function, oxidative-nitrosative stress, and inflammatory responses that underline the pathogenesis of a number of neurodegenerative diseases. However, the types of extracellular agonists that target intracellular signaling pathways leading to cPLA(2) activation among different cell types and under different physiological and pathological conditions have not been investigated in detail. In this review, special emphasis is given to metabolic events linking cPLA(2) to activation in neurons, astrocytes, microglial cells, and cerebrovascular cells. Understanding the molecular mechanism(s) for regulation of this enzyme is deemed important in the development of new therapeutic targets for the treatment and prevention of neurodegenerative diseases.

PMID:
24573693
PMCID:
PMC4147031
DOI:
10.1007/s12035-014-8662-4
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center