Format

Send to

Choose Destination
Free Radic Res. 2014 Jun;48(6):641-8. doi: 10.3109/10715762.2014.898294. Epub 2014 Mar 25.

The uremic toxin indoxyl sulfate acts as a pro- or antioxidant on LDL oxidation.

Author information

1
Department of Medical Chemistry and Pathobiochemistry, Center of Pathobiochemistry and Genetics, Medical University of Vienna , Vienna , Austria.

Abstract

Uremic toxins have been shown to play a role in chronic kidney disease (CKD) associated oxidative stress. Oxidative stress and inflammation have been associated with increased risk of cardiovascular disease in uraemia. The oxidative modification of LDL may play a role in early atherogenesis. Enhanced LDL oxidation has been found in uremic patients which may account for accelerated atherosclerosis observed in CKD. The uremic toxin indoxyl sulfate (IS) has been reported to exert oxidative and antioxidative activity. Thus, in the present study we have investigated the influence of IS on the atherogenic modifications of LDL exposed in vitro to different oxidising systems. The transition metal ion (Cu(2+)) and hemin/H2O2 induced lipid oxidation reactions monitored by conjugated diene formation, were inhibited by the presence of IS, which points to possible antioxidant effects by this uremic toxin. A protective effect of IS on LDL apoprotein modification by the exposure to the product of the myeloperoxidase/H2O2/Cl(-) system HOCl, was also observed as estimated by protein carbonyl formation. In contrast, a marked increase in conjugated dienes and lipid hydroperoxides was observed when lipid oxidation was initiated by the free radical generator AAPH in presence of IS. The GC-MS analysis revealed the formation of indole-2,3-dione and 6,12-dihydro-6,12-dioxo-indolo[2,1-b]quinazoline (tryptanthrin) in IS/AAPH reaction. A scheme for the generation of tryptanthrin from IS via indoxyl radicals is proposed, which may facilitate LDL lipid oxidation. Our observations add further insight in the Janus-faced properties of this important uremic toxin.

PMID:
24568219
DOI:
10.3109/10715762.2014.898294
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center