Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Med. 2014 Mar;20(3):291-5. doi: 10.1038/nm.3479. Epub 2014 Feb 23.

Dopamine mediates vagal modulation of the immune system by electroacupuncture.

Author information

  • 11] Laboratory of Anti-inflammatory Signaling, Department of Surgery, Rutgers University New Jersey Medical School, Newark, New Jersey, USA. [2] Medical Research Unit on Immunochemistry, National Medical Center Siglo XXI, Mexico City, Mexico.
  • 2Laboratory of Anti-inflammatory Signaling, Department of Surgery, Rutgers University New Jersey Medical School, Newark, New Jersey, USA.
  • 31] Laboratory of Anti-inflammatory Signaling, Department of Surgery, Rutgers University New Jersey Medical School, Newark, New Jersey, USA. [2] The Institute for Social Security and Services for the State's Employees Research Institute, Mexico City, Mexico.
  • 4Laboratory of Immunobiology, Hospital Juárez de México, Mexico City, Mexico.
  • 5Medical Research Unit on Immunochemistry, National Medical Center Siglo XXI, Mexico City, Mexico.
  • 61] Laboratory of Anti-inflammatory Signaling, Department of Surgery, Rutgers University New Jersey Medical School, Newark, New Jersey, USA. [2] Center of Immunology and Inflammation, Rutgers University New Jersey Medical School, Newark, New Jersey, USA.

Abstract

Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings. Neuronal networks represent physiological mechanisms, selected by evolution to control inflammation, that can be exploited for the treatment of inflammatory and infectious disorders. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing vagal activation of aromatic L-amino acid decarboxylase, leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized mice mimic clinical adrenal insufficiency, increase the susceptibility to sepsis and prevent the anti-inflammatory effects of electroacupuncture. Dopamine inhibits cytokine production via dopamine type 1 (D1) receptors. D1 receptor agonists suppress systemic inflammation and rescue mice with adrenal insufficiency from polymicrobial peritonitis. Our results suggest a new anti-inflammatory mechanism mediated by the sciatic and vagus nerves that modulates the production of catecholamines in the adrenal glands. From a pharmacological perspective, the effects of selective dopamine agonists mimic the anti-inflammatory effects of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders.

PMID:
24562381
PMCID:
PMC3949155
DOI:
10.1038/nm.3479
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center