Format

Send to

Choose Destination
See comment in PubMed Commons below
Stem Cells Transl Med. 2014 Apr;3(4):458-69. doi: 10.5966/sctm.2013-0117. Epub 2014 Feb 20.

Human adult white matter progenitor cells are multipotent neuroprogenitors similar to adult hippocampal progenitors.

Author information

1
Division of Neurodegenerative Diseases, Department of Neurology, and Department of Neurosurgery, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Division of Biology, California Institute of Technology, Pasadena, California, USA; Center for Regenerative Therapies Dresden, Dresden, Germany.

Abstract

Adult neural progenitor cells (aNPC) are a potential autologous cell source for cell replacement in neurologic diseases or for cell-based gene therapy of neurometabolic diseases. Easy accessibility, long-term expandability, and detailed characterization of neural progenitor cell (NPC) properties are important requisites for their future translational/clinical applications. aNPC can be isolated from different regions of the adult human brain, including the accessible subcortical white matter (aNPCWM), but systematic studies comparing long-term expanded aNPCWM with aNPC from neurogenic brain regions are not available. Freshly isolated cells from subcortical white matter and hippocampus expressed oligodendrocyte progenitor cell markers such as A2B5, neuron-glial antigen 2 (NG2), and oligodendrocyte transcription factor 2 (OLIG2) in ∼20% of cells but no neural stem cell (NSC) markers such as CD133 (Prominin1), Nestin, SOX2, or PAX6. The epidermal growth factor receptor protein was expressed in 18% of aNPCWM and 7% of hippocampal aNPC (aNPCHIP), but only a small fraction of cells, 1 of 694 cells from white matter and 1 of 1,331 hippocampal cells, was able to generate neurospheres. Studies comparing subcortical aNPCWM with their hippocampal counterparts showed that both NPC types expressed mainly markers of glial origin such as NG2, A2B5, and OLIG2, and the NSC/NPC marker Nestin, but no pericyte markers. Both NPC types were able to produce neurons, astrocytes, and oligodendrocytes in amounts comparable to fetal NSC. Whole transcriptome analyses confirmed the strong similarity of aNPCWM to aNPCHIP. Our data show that aNPCWM are multipotent NPC with long-term expandability similar to NPC from hippocampus, making them a more easily accessible source for possible autologous NPC-based treatment strategies.

KEYWORDS:

Fetal neural stem cells; Hippocampus; Human adult brain; Neural progenitor cells; White matter

PMID:
24558163
PMCID:
PMC3973711
DOI:
10.5966/sctm.2013-0117
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center