Format

Send to

Choose Destination
Front Microbiol. 2014 Feb 3;5:19. doi: 10.3389/fmicb.2014.00019. eCollection 2014.

Division site positioning in bacteria: one size does not fit all.

Author information

1
The ithree Institute, University of Technology Sydney, NSW, Australia.

Abstract

Spatial regulation of cell division in bacteria has been a focus of research for decades. It has been well studied in two model rod-shaped organisms, Escherichia coli and Bacillus subtilis, with the general belief that division site positioning occurs as a result of the combination of two negative regulatory systems, Min and nucleoid occlusion. These systems influence division by preventing the cytokinetic Z ring from forming anywhere other than midcell. However, evidence is accumulating for the existence of additional mechanisms that are involved in controlling Z ring positioning both in these organisms and in several other bacteria. In some cases the decision of where to divide is solved by variations on a common evolutionary theme, and in others completely different proteins and mechanisms are involved. Here we review the different ways bacteria solve the problem of finding the right place to divide. It appears that a one-size-fits-all model does not apply, and that individual species have adapted a division-site positioning mechanism that best suits their lifestyle, environmental niche and mode of growth to ensure equal partitioning of DNA for survival of the next generation.

KEYWORDS:

Z ring; bacterial cell division; cell division; division regulation; ftsZ; min system; nucleoid occlusion

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center