Send to

Choose Destination
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3.

Mechanotransduction of fluid stresses governs 3D cell migration.

Author information

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.


Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ∼3 µm/s has been shown to induce cell migration in the upstream direction (rheotaxis). However, the molecular biophysical mechanism that underlies upstream cell polarization and rheotaxis remains unclear. We developed a microfluidic platform to investigate the effects of IF fluid stresses imparted on cells embedded within a collagen type I hydrogel, and we demonstrate that IF stresses result in a transcellular gradient in β1-integrin activation with vinculin, focal adhesion kinase (FAK), FAK(PY397), F actin, and paxillin-dependent protrusion formation localizing to the upstream side of the cell, where matrix adhesions are under maximum tension. This previously unknown mechanism is the result of a force balance between fluid drag on the cell and matrix adhesion tension and is therefore a fundamental, but previously unknown, stimulus for directing cell movement within porous extracellular matrix.


breast cancer; mechanobiology; metastasis

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center