Format

Send to

Choose Destination
BMC Genomics. 2014 Feb 18;15:139. doi: 10.1186/1471-2164-15-139.

Unique features of the transcriptional response to model aneuploidy in human cells.

Author information

1
Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany. storchov@biochem.mpg.de.

Abstract

BACKGROUND:

Aneuploidy, a karyotype deviating from multiples of a haploid chromosome set, affects the physiology of eukaryotes. In humans, aneuploidy is linked to pathological defects such as developmental abnormalities, mental retardation or cancer, but the underlying mechanisms remain elusive. There are many different types and origins of aneuploidy, but whether there is a uniform cellular response to aneuploidy in human cells has not been addressed so far.

RESULTS:

Here we evaluate the transcription profiles of eleven trisomic and tetrasomic cell lines and two cell lines with complex aneuploid karyotypes. We identify a characteristic aneuploidy response pattern defined by upregulation of genes linked to endoplasmic reticulum, Golgi apparatus and lysosomes, and downregulation of DNA replication, transcription as well as ribosomes. Strikingly, complex aneuploidy elicits the same transcriptional changes as trisomy. To uncover the triggers of the response, we compared the profiles with transcription changes in human cells subjected to stress conditions. Interestingly, we found an overlap only with the response to treatment with the autophagy inhibitor bafilomycin A1. Finally, we identified 23 genes whose expression is significantly altered in all aneuploids and which may thus serve as aneuploidy markers.

CONCLUSIONS:

Our analysis shows that despite the variability in chromosome content, aneuploidy triggers uniform transcriptional response in human cells. A common response independent of the type of aneuploidy might be exploited as a novel target for cancer therapy. Moreover, the potential aneuploidy markers identified in our analysis might represent novel biomarkers to assess the malignant potential of a tumor.

PMID:
24548329
PMCID:
PMC3932016
DOI:
10.1186/1471-2164-15-139
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center