Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2014 Mar 21;6(6):3418-22. doi: 10.1039/c3nr04948e. Epub 2014 Feb 18.

Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S(1-x)Se(x))4 nanocrystals.

Author information

Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, China.


Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000±2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center