Format

Send to

Choose Destination
Eur J Immunol. 1988 Apr;18(4):593-600.

The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor.

Author information

1
Department of Neurosurgery, University Hospital, Z├╝rich, Switzerland.

Abstract

Human glioblastoma cells secrete a peptide termed glioblastoma-derived T cell suppressor factor (G-TsF) which inhibits T cell activation. Recently, purification and cloning of G-TsF revealed that G-TsF is identical to transforming growth factor-beta 2. As shown here, G-TsF suppresses the growth of an ovalbumin-specific mouse T helper cell clone (OVA-7T) independently of the stimulus used being either (a) antigen in the presence of antigen-presenting cells, or (b) interleukin 2 (IL2) or (c) phorbol ester and calcium ionophore. Furthermore, in the presence of antibodies against IL2 receptors, G-TsF was able to suppress the residual proliferation still observed when OVA-7T were stimulated with phorbol ester/ionophore. G-TsF failed to inhibit the release of IL3 from OVA-7T activated with IL2. Taken together, the data provide evidence that G-TsF does not directly interfere with interactions of IL2 with its receptor but rather inhibits T cell activation by interfering with an as yet unidentified pathway used by both IL2 and phorbol ester/ionophore. When analyzing different monokines and lymphokines for its effect on G-TsF-induced suppression of T cell growth the only factor found to partially neutralize the effect of G-TsF was tumor necrosis factor-alpha.

PMID:
2452745
DOI:
10.1002/eji.1830180416
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center