Format

Send to

Choose Destination
Stroke. 2014 Apr;45(4):1077-83. doi: 10.1161/STROKEAHA.113.003168. Epub 2014 Feb 13.

Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis.

Author information

1
From the Unité Neurovasculaire, Pôle Psychiatrie-Neurologie (I.F., O.D.), Unité IRM, Pôle Radiologie (A.K.), Unité IRM 3T Recherche IRMaGe - Inserm US17/CNRS UMS 3552 (A.K., A.J.), and Pôle Recherche (M.H., A.J.), CHU de Grenoble, Grenoble, France; and Neural Systems Group, Massachusetts General Hospital, Charlestown (T.A.Z.).

Abstract

BACKGROUND AND PURPOSE:

Although neuroimaging studies have revealed specific patterns of reorganization in the sensorimotor control network after stroke, their role in recovery remains unsettled. To review the existing evidence systematically, we performed activation likelihood estimation meta-analysis of functional neuroimaging studies investigating upper limb movement-related brain activity after stroke.

METHODS:

Twenty-four studies using sensorimotor tasks in standardized coordinates were included, totaling 255 patients and 145 healthy controls. Across the entire brain, we compared task-related activity patterns in good and poor recovery and assessed the magnitude of spatial shifts in sensorimotor activity in cortical motor areas after stroke.

RESULTS:

When compared with healthy controls, patients showed higher activation likelihood estimation values in contralesional primary motor soon after stroke that abated with time, but were not related to motor outcome. The observed activity changes were consistent with restoration of typical interhemispheric balance. In contrast, activation likelihood estimation values in ipsilesional medial-premotor and primary motor cortex were associated with good outcome, reorganization that may reflect vicarious processes associated with ventral activity shifts from BA4a to 4p. In the anterior cerebellum, a novel finding was the association of poor recovery with increased vermal activity, possibly reflecting behaviorally inadequate compensatory strategies engaging the fastigio-thalamo-cortical and corticoreticulospinal systems.

CONCLUSIONS:

Activity in ipsilesional primary motor and medial-premotor cortices in chronic stroke signals good motor recovery, whereas cerebellar vermis activity signals poor recovery. Functional MRI may be useful in identifying recovery biomarkers.

KEYWORDS:

biomarkers; functional neuroimaging; magnetic resonance imaging; motor cortex; positron-emission tomography

PMID:
24525953
DOI:
10.1161/STROKEAHA.113.003168
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center