Send to

Choose Destination
J Am Chem Soc. 2014 Feb 19;136(7):2682-94. doi: 10.1021/ja410424g. Epub 2014 Feb 10.

All-carbon quaternary stereogenic centers in acyclic systems through the creation of several C-C bonds per chemical step.

Author information

The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology , Technion City, Haifa 32000, Israel.


In the past few decades, it has become clear that asymmetric catalysis is one of the most powerful methods for the construction of carbon-carbon as well as carbon-heteroatom bonds in a stereoselective manner. However, when structural complexity increases (i.e., all-carbon quaternary stereogenic center), the difficulty in reaching the desired adducts through asymmetric catalytic reactions leads to a single carbon-carbon bond-forming event per chemical step between two components. Issues of efficiency and convergence should therefore be addressed to avoid extraneous chemical steps. In this Perspective, we present approaches that tackle the stimulating problem of efficiency while answering interesting synthetic challenges. Ideally, if one could create all-carbon quaternary stereogenic centers via the creation of several new carbon-carbon bonds in an acyclic system and in a single-pot operation from simple precursors, it would certainly open new horizons toward solving the synthetic problems. Even more important for any further design, the presence of polyreactive intermediates in synthesis (bismetalated, carbenoid, and oxenoids species) becomes now an indispensable tool, as it creates consecutively the same number of carbon-carbon bonds as in a multi-step process, but in a single-pot operation.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center