Format

Send to

Choose Destination
BMC Genomics. 2014 Feb 7;15:109. doi: 10.1186/1471-2164-15-109.

Genome-enabled prediction of quantitative traits in chickens using genomic annotation.

Author information

1
Department of Animal Sciences, University of Wisconsin-Madison, Wisconsin, USA. morota@wisc.edu.

Abstract

BACKGROUND:

Genome-wide association studies have been deemed successful for identifying statistically associated genetic variants of large effects on complex traits. Past studies have found enrichment of trait-associated SNPs in functionally annotated regions, while depletion was reported for intergenic regions (IGR). However, no systematic examination of connections between genomic regions and predictive ability of complex phenotypes has been carried out.

RESULTS:

In this study, we partitioned SNPs based on their annotation to characterize genomic regions that deliver low and high predictive power for three broiler traits in chickens using a whole-genome approach. Additive genomic relationship kernels were constructed for each of the genic regions considered, and a kernel-based Bayesian ridge regression was employed as prediction machine. We found that the predictive performance for ultrasound area of breast meat from using genic regions marked by SNPs was consistently better than that from SNPs in IGR, while IGR tagged by SNPs were better than the genic regions for body weight and hen house egg production. We also noted that predictive ability delivered by the whole battery of markers was close to the best prediction achieved by one of the genomic regions.

CONCLUSIONS:

Whole-genome regression methods use all available quality filtered SNPs into a model, contrary to accommodating only validated SNPs from exonic or coding regions. Our results suggest that, while differences among genomic regions in terms of predictive ability were observed, the whole-genome approach remains as a promising tool if interest is on prediction of complex traits.

PMID:
24502227
PMCID:
PMC3922252
DOI:
10.1186/1471-2164-15-109
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center