Format

Send to

Choose Destination
Cytometry A. 2014 Jul;85(7):628-35. doi: 10.1002/cyto.a.22437. Epub 2014 Feb 5.

Cell type related differences in staining with pentameric thiophene derivatives.

Author information

1
Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology, and Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland.

Abstract

Fluorescent compounds capable of staining cells selectively without affecting their viability are gaining importance in biology and medicine. Recently, a new family of optical dyes, denoted luminescent conjugated oligothiophenes (LCOs), has emerged as an interesting class of highly emissive molecules for studying various biological phenomena. Properly functionalized LCOs have been utilized for selective identification of disease-associated protein aggregates and for selective detection of distinct cells. Herein, we present data on differential staining of various cell types, including cancer cells. The differential staining observed with newly developed pentameric LCOs is attributed to distinct side chain functionalities along the thiophene backbone. Employing flow cytometry and fluorescence microscopy we examined a library of LCOs for stainability of a variety of cell lines. Among tested dyes we found promising candidates that showed strong or moderate capability to stain cells to different extent, depending on target cells. Hence, LCOs with diverse imidazole motifs along the thiophene backbone were identified as an interesting class of agents for staining of cancer cells, whereas LCOs with other amino acid side chains along the backbone showed a complete lack of staining for the cells included in the study. Furthermore, for p-HTMI,a LCO functionalized with methylated imidazole moieties, the staining was dependent on the p53 status of the cells, indicating that the molecular target for the dye is a cellular component regulated by p53. We foresee that functionalized LCOs will serve as a new class of optical ligands for fluorescent classification of cells and expand the toolbox of reagents for fluorescent live imaging of different cells.

KEYWORDS:

cancer stem cells; fluorescent probes; luminescent conjugated oligothiophenes

PMID:
24500794
DOI:
10.1002/cyto.a.22437
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center