Send to

Choose Destination
Brain Res. 1988 Jan 12;438(1-2):101-7.

Modulation of neurotransmitter metabolism by dihydropyridine calcium channel ligands in mouse brain.

Author information

Laboratory of Neuroscience, NIDDK, Bethesda, MD 20892.


The regional concentrations of dopamine, serotonin, dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole acetic acid were measured in mouse brain following administration of the dihydropyridine calcium channel activator BAY K 8644, and antagonist, nifedipine. BAY K 8644 (1-8 mg/kg) produced dose- and time-dependent increases in dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid concentrations in the caudate, without altering dopamine and serotonin levels. No changes in 5-hydroxyindoleacetic acid concentration were observed in the raphe nuclei, hypothalamus, hippocampus and frontal cortex. Nifedipine (4 mg/kg) blocked BAY K 8644- (2 mg/kg) elicited increases in dihydroxyphenylacetic acid in the caudate. Furthermore, a higher dose of nifedipine (8 mg/kg) decreased dihydroxyphenylacetic acid and homovanillic acid, but did not affect dopamine, serotonin or 5-hydroxyindoleacetic acid concentrations, while a lower dose of nifedipine (2 mg/kg) significantly increased serotonin, 5-hydroxyindoleacetic acid and homovanillic acid, but did not affect dopamine and dihydroxyphenylacetic acid concentrations. The findings that both BAY K 8644 and nifedipine affect neurotransmitter metabolism in vivo in a dose-, time- and brain region-dependent manner, suggest that high-affinity dihydropyridine calcium channel binding sites play an important role in regulating neurotransmitter turnover in the central nervous system.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center