Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncotarget. 2014 Jan 30;5(2):363-74.

EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma.

Author information

1
Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.

Abstract

Glioblastoma is the most common malignant primary brain tumor. Temozolomide (TMZ) is the standard chemotherapeutic agent for this disease. However, intrinsic and acquired TMZ-resistance represents a major obstacle for this therapy. In order to identify factors involved in TMZ-resistance, we engineered different TMZ-resistant glioblastoma cell lines. Gene expression analysis demonstrated that EFEMP1, an extracellular matrix protein, is associated with TMZ-resistant phenotype. Silencing of EFEMP1 in glioblastoma cells resulted in decreased cell survival following TMZ treatment, whereas overexpression caused TMZ-resistance. EFEMP1 acts via multiple signaling pathways, including γ-secretase-mediated activation of the Notch pathway. We show that inhibition of γ-secretase by RO4929097 causes at least partial sensitization of glioblastoma cells to temozolomide in vitro and in vivo. In addition, we show that EFEMP1 expression levels correlate with survival in TMZ-treated glioblastoma patients. Altogether our results suggest EFEMP1 as a potential therapeutic target to overcome TMZ-resistance in glioblastoma.

PMID:
24495907
PMCID:
PMC3964213
DOI:
10.18632/oncotarget.1620
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Impact Journals, LLC Icon for PubMed Central
    Loading ...
    Support Center