Format

Send to

Choose Destination
See comment in PubMed Commons below
J Sleep Res. 2014 Aug;23(4):475-84. doi: 10.1111/jsr.12126. Epub 2014 Feb 3.

Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.

Author information

1
The Respiratory Sleep Disorders Unit, St Vincent's University Healthcare Group, Dublin 4, Ireland.

Abstract

Ambulatory monitoring is of major clinical interest in the diagnosis of obstructive sleep apnoea syndrome. We compared a novel non-contact biomotion sensor, which provides an estimate of both sleep time and sleep-disordered breathing, with wrist actigraphy in the assessment of total sleep time in adult humans suspected of obstructive sleep apnoea syndrome. Both systems were simultaneously evaluated against polysomnography in 103 patients undergoing assessment for obstructive sleep apnoea syndrome in a hospital-based sleep laboratory (84 male, aged 55 ± 14 years and apnoea-hypopnoea index 21 ± 23). The biomotion sensor demonstrated similar accuracy to wrist actigraphy for sleep/wake determination (77.3%: biomotion; 76.5%: actigraphy), and the biomotion sensor demonstrated higher specificity (52%: biomotion; 34%: actigraphy) and lower sensitivity (86%: biomotion; 94%: actigraphy). Notably, total sleep time estimation by the biomotion sensor was superior to actigraphy (average overestimate of 10 versus 57 min), especially at a higher apnoea-hypopnoea index. In post hoc analyses, we assessed the improved apnoea-hypopnoea index accuracy gained by combining respiratory measurements from polysomnography for total recording time (equivalent to respiratory polygraphy) with total sleep time derived from actigraphy or the biomotion sensor. Here, the number of misclassifications of obstructive sleep apnoea severity compared with full polysomnography was reduced from 10/103 (for total respiratory recording time alone) to 7/103 and 4/103 (for actigraphy and biomotion sensor total sleep time estimate, respectively). We conclude that the biomotion sensor provides a viable alternative to actigraphy for sleep estimation in the assessment of obstructive sleep apnoea syndrome. As a non-contact device, it is suited to longitudinal assessment of sleep, which could also be combined with polygraphy in ambulatory studies.

KEYWORDS:

ambulatory; microarousals; motionless wakefulness; portable monitor; sleep estimation

PMID:
24495222
DOI:
10.1111/jsr.12126
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center