Send to

Choose Destination
Planta. 1971 Mar;100(1):76-86. doi: 10.1007/BF00386887.

Responses of stomata to changes in humidity.

Author information

Botanisches Institut II der Universität Würzburg, Würzburg, Germany.


Large areas of the lower epidermis of full-grown leaves of Polypodium vulgare (and Valerianella locusta) are normally separated from the mesophyll by an extensive subepidermal airspace. Epidermal stripes were prepared for experiments to simulate these conditions in order to investigate stomatal reactions. They were placed with their inner surface in contact with an airspace of uniformly high humidity. The outer surface was treated with air of varying degrees of humidity. The stomatal reactions were observed by microscope and the opening of the guard cells determined photographically.Treatment of the outer side of the epidermis with dry air led to a rapid closing of the stomata, whilst moist air caused opening. This induction of opening and closing movements could be repeated up to 15 times with the same stoma by changing the degree of humidity. Neighbouring groups of stomata showed different apertures according to their individual humidity conditions. The degree of aperture of the stomata depended on the water potential of the ambient air and also on the humidity conditions in the subepidermal airspace.The cause of this stomatal behaviour could lie in the "peristomatal transpiration". In this way, the guard cells are able to function as "humidity sensors" which "measure" the difference in water potential inside and outside the leaf. Their aperture thus is controlled by their individual transpiration conditions. This controlling mechanism could be very important for the water economy of plants. They would appear to be able to reduce their transpiration through an increase in diffusion resistance of the stomata during decreasing humidity in the ambient air, without changing the water status of the whole leaf.


Supplemental Content

Loading ...
Support Center