Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1988 Feb;85(4):1218-22.

Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants.

Author information

National Cancer Institute-Frederick Cancer Research Facility, Bionetics Research Inc.-Basic Research Program, MD 21701.


We have constructed a plasmid that, when introduced into Escherichia coli, induces the synthesis of large quantities of a protein with an apparent molecular mass of 66 kDa that differs from human immunodeficiency virus (HIV) RNA-dependent DNA polymerase (deoxynucleoside-triphosphate:DNA deoxynucleotidyltransferase or reverse transcriptase, EC only in that it has two additional amino-terminal amino acids. This protein is soluble in E. coli extracts, is active in reverse transcriptase assays, and shows inhibition profiles with dideoxy-TTP and dideoxy-GTP that are indistinguishable from the viral enzyme. The deletion of 23 amino-terminal or carboxyl-terminal amino acids or the insertion of 5 amino acids at position 143 substantially decreases the polymerizing activity of the HIV reverse transcriptase made in E. coli. The properties of a 51-kDa reverse transcriptase-related protein made in E. coli suggests that the p51 found in the virion probably does not have substantial polymerizing activity. The full-length HIV reverse transcriptase and the various mutant proteins produced in E. coli should be quite useful for structural and biochemical analyses as well as for the production of antibodies.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center