Send to

Choose Destination
J Mol Biol. 1987 Dec 5;198(3):383-92.

Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2.

Author information

Department of Biological Chemistry, University of California, Irvine 92717.


It has been shown that the transcription of rRNA in Escherichia coli is feedback-regulated by its own transcription products through a negative feedback loop which appears to require the assembly of rRNA into complete ribosomes. In order to examine whether the feedback loop involves the ribosomes' main function, translation, we have constructed a strain in which the chromosomal copy of infB, encoding IF2, was placed under lac promoter/operator control, and the effects of limitation of translation initiation factor IF2 on the regulation were examined. By varying the concentration of a lac operon inducer, isopropyl thiogalactoside (IPTG), it was possible to vary the cellular concentration of IF2. Under the growth conditions used, decreasing the concentration of IF2 about twofold affected the growth rate only slightly, but further deprivation of IF2 resulted in a significant decrease in growth rate, an increase in RNA content and a large accumulation of non-translating ribosomes. These accumulated ribosomes were apparently unable to cause feedback regulation of rRNA synthesis in the absence of sufficient IF2. When a higher concentration of IPTG was added to these IF2-deficient cells, a rapid increase in the IF2 level and a significant decrease in the rate of RNA accumulation were observed before the new steady-state growth was attained. These results indicate that IF2 apparently is necessary for feedback regulation of stable RNA and imply that ribosomes must enter translation for feedback regulation to occur.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center