Format

Send to

Choose Destination
Phys Rev Lett. 2014 Jan 17;112(2):022001. Epub 2014 Jan 15.

Observation of a charged (DD*)± mass peak in e+ e- → πDD* at sqrt[s] = 4.26  GeV.

Ablikim M1, Achasov MN2, Albayrak O3, Ambrose DJ4, An FF1, An Q5, Bai JZ1, Baldini Ferroli R6, Ban Y7, Becker J8, Bennett JV9, Bertani M6, Bian JM10, Boger E11, Bondarenko O12, Boyko I11, Braun S13, Briere RA3, Bytev V11, Cai H14, Cai X1, Cakir O15, Calcaterra A6, Cao GF1, Cetin SA16, Chang JF1, Chelkov G11, Chen G1, Chen HS1, Chen JC1, Chen ML1, Chen SJ17, Chen XR18, Chen YB1, Cheng HP19, Chu XK7, Chu YP1, Cronin-Hennessy D10, Dai HL1, Dai JP1, Dedovich D11, Deng ZY1, Denig A20, Denysenko I11, Destefanis M21, Ding WM22, Ding Y23, Dong LY1, Dong MY1, Du SX24, Fang J1, Fang SS1, Fava L25, Feng CQ5, Friedel P8, Fu CD1, Fu JL17, Fuks O11, Gao Y26, Geng C5, Goetzen K27, Gong WX1, Gradl W20, Greco M21, Gu MH1, Gu YT28, Guan YH29, Guo AQ30, Guo LB31, Guo T31, Guo YP30, Han YL1, Harris FA32, He KL1, He M1, He ZY30, Held T8, Heng YK1, Hou ZL1, Hu C31, Hu HM1, Hu JF13, Hu T1, Huang GM33, Huang GS5, Huang JS34, Huang L1, Huang XT22, Huang Y17, Hussain T35, Ji CS5, Ji Q1, Ji QP30, Ji XB1, Ji XL1, Jiang LL1, Jiang XS1, Jiao JB22, Jiao Z19, Jin DP1, Jin S1, Jing FF26, Kalantar-Nayestanaki N12, Kavatsyuk M12, Kloss B20, Kopf B8, Kornicer M32, Kuehn W13, Lai W1, Lange JS13, Lara M9, Larin P36, Leyhe M8, Li CH1, Li C5, Li C5, Li DL37, Li DM24, Li F1, Li G1, Li HB1, Li JC1, Li K38, Li L1, Li N28, Li PR29, Li QJ1, Li WD1, Li WG1, Li XL22, Li XN1, Li XQ30, Li XR39, Li ZB40, Liang H5, Liang YF41, Liang YT13, Liao GR26, Lin DX36, Liu BJ1, Liu CL3, Liu CX1, Liu FH42, Liu F1, Liu F33, Liu HB28, Liu HH43, Liu HM1, Liu JP14, Liu K26, Liu KY23, Liu PL22, Liu Q29, Liu SB5, Liu X18, Liu YB30, Liu ZA1, Liu Z1, Liu Z1, Loehner H12, Lou XC1, Lu GR34, Lu HJ19, Lu JG1, Lu XR29, Lu YP1, Luo CL31, Luo MX44, Luo T32, Luo XL1, Lv M1, Ma FC23, Ma HL1, Ma QM1, Ma S1, Ma T1, Ma XY1, Maas FE36, Maggiora M21, Malik QA35, Mao YJ7, Mao ZP1, Messchendorp JG12, Min J1, Min TJ1, Mitchell RE9, Mo XH1, Moeini H12, MoralesMorales C36, Moriya K9, Muchnoi NY2, Muramatsu H4, Nefedov Y11, Nikolaev IB2, Ning Z1, Nisar S45, Olsen SL39, Ouyang Q1, Pacetti S46, Park JW32, Pelizaeus M8, Peng HP5, Peters K27, Ping JL31, Ping RG1, Poling R10, Prencipe E20, Qi M17, Qian S1, Qiao CF29, Qin LQ22, Qin XS1, Qin Y7, Qin ZH1, Qiu JF1, Rashid KH35, Redmer CF20, Ripka M20, Rong G1, Ruan XD28, Sarantsev A, Schumann S20, Shan W7, Shao M5, Shen CP47, Shen XY1, Sheng HY1, Shepherd MR9, Song WM1, Song XY1, Spataro S21, Spruck B13, Sun GX1, Sun JF34, Sun SS1, Sun YJ5, Sun YZ1, Sun ZJ1, Sun ZT5, Tang CJ41, Tang X1, Tapan I48, Thorndike EH4, Toth D10, Ullrich M13, Uman I16, Varner GS32, Wang B1, Wang D7, Wang DY7, Wang K1, Wang LL1, Wang LS1, Wang M22, Wang P1, Wang PL1, Wang QJ1, Wang SG7, Wang XF26, Wang XL5, Wang YD6, Wang YF1, Wang YQ20, Wang Z1, Wang ZG1, Wang ZH5, Wang ZY1, Wei DH49, Wei JB7, Weidenkaff P20, Wen QG5, Wen SP1, Werner M13, Wiedner U8, Wu LH1, Wu N1, Wu SX5, Wu W30, Wu Z1, Xia LG26, Xia YX37, Xiao ZJ31, Xie YG1, Xiu QL1, Xu GF1, Xu QJ38, Xu QN29, Xu XP50, Xue Z1, Yan L5, Yan WB5, Yan WC5, Yan YH37, Yang HX1, Yang Y33, Yang YX49, Yang YZ28, Ye H1, Ye M1, Ye MH51, Yu BX1, Yu CX30, Yu HW7, Yu JS18, Yu SP22, Yuan CZ1, Yuan WL17, Yuan Y1, Zafar AA35, Zallo A6, Zang SL17, Zeng Y37, Zhang BX1, Zhang BY1, Zhang C17, Zhang CB37, Zhang CC1, Zhang DH1, Zhang HH40, Zhang HY1, Zhang JL1, Zhang JQ1, Zhang JW1, Zhang JY1, Zhang JZ1, Zhang L37, Zhang SH1, Zhang XJ1, Zhang XY22, Zhang Y1, Zhang YH1, Zhang ZP5, Zhang ZY14, Zhang Z33, Zhao G1, Zhao JW1, Zhao L5, Zhao L1, Zhao MG30, Zhao Q1, Zhao SJ24, Zhao TC1, Zhao XH17, Zhao YB1, Zhao ZG5, Zhemchugov A11, Zheng B52, Zheng JP1, Zheng YH29, Zhong B31, Zhou L1, Zhou X14, Zhou XK29, Zhou XR5, Zhu K1, Zhu KJ1, Zhu XL26, Zhu YC5, Zhu YS1, Zhu ZA1, Zhuang J1, Zou BS1, Zou JH1; (BESIII Collaboration).

Author information

1
Institute of High Energy Physics, Beijing 100049, People's Republic of China.
2
G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia.
3
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
4
University of Rochester, Rochester, New York 14627, USA.
5
University of Science and Technology of China, Hefei 230026, People's Republic of China.
6
INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy.
7
Peking University, Beijing 100871, People's Republic of China.
8
Bochum Ruhr-University, D-44780 Bochum, Germany.
9
Indiana University, Bloomington, Indiana 47405, USA.
10
University of Minnesota, Minneapolis, Minnesota 55455, USA.
11
Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia.
12
KVI, University of Groningen, NL-9747 AA Groningen, Netherlands.
13
Universitaet Giessen, D-35392 Giessen, Germany.
14
WuhanUniversity, Wuhan 430072, People's Republic of China.
15
Ankara University, Dogol Caddesi, 06100 Tandogan, Ankara, Turkey.
16
Dogus University, 34722 Istanbul, Turkey.
17
Nanjing University, Nanjing 210093, People's Republic of China.
18
Lanzhou University, Lanzhou 730000, People's Republic of China.
19
Huangshan College, Huangshan 245000, People's Republic of China.
20
Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany.
21
University of Turin, I-10125 Turin, Italy and INFN, I-10125 Turin, Italy.
22
Shandong University, Jinan 250100, People's Republic of China.
23
Liaoning University, Shenyang 110036, People's Republic of China.
24
Zhengzhou University, Zhengzhou 450001, People's Republic of China.
25
University of Eastern Piedmont, I-15121 Alessandria, Italy and INFN, I-10125 Turin, Italy.
26
Tsinghua University, Beijing 100084, People's Republic of China.
27
GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany.
28
GuangXi University, Nanning 530004, People's Republic of China.
29
University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
30
Nankai University, Tianjin 300071, People's Republic of China.
31
Nanjing Normal University, Nanjing 210023, People's Republic of China.
32
University of Hawaii, Honolulu, Hawaii 96822, USA.
33
Central China Normal University, Wuhan 430079, People's Republic of China.
34
Henan Normal University, Xinxiang 453007, People's Republic of China.
35
University of the Punjab, Lahore-54590, Pakistan.
36
Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany.
37
Hunan University, Changsha 410082, People's Republic of China.
38
Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
39
Seoul National University, Seoul 151-747, Korea.
40
Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
41
Sichuan University, Chengdu 610064, People's Republic of China.
42
Shanxi University, Taiyuan 030006, People's Republic of China.
43
Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
44
Zhejiang University, Hangzhou 310027, People's Republic of China.
45
COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan.
46
INFN and University of Perugia, I-06100, Perugia, Italy.
47
Beihang University, Beijing 100191, People's Republic of China.
48
Uludag University, 16059 Bursa, Turkey.
49
Guangxi Normal University, Guilin 541004, People's Republic of China.
50
Seoul National University, Seoul 151-747, Korea and Soochow University, Suzhou 215006, People's Republic of China.
51
China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China.
52
University of South China, Hengyang 421001, People's Republic of China.

Abstract

We report on a study of the process e+ e- → π± (DD*)∓ at sqrt[s] = 4.26  GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (DD*)∓ invariant mass distribution. When fitted to a mass-dependent-width Breit-Wigner line shape, the pole mass and width are determined to be Mpole = (3883.9±1.5(stat)±4.2(syst))  MeV/c2 and Γpole = (24.8±3.3(stat)±11.0(syst))  MeV. The mass and width of the structure, which we refer to as Zc(3885), are 2σ and 1σ, respectively, below those of the Zc(3900) → π± J/ψ peak observed by BESIII and Belle in π+ π- J/ψ final states produced at the same center-of-mass energy. The angular distribution of the πZc(3885) system favors a JP = 1+ quantum number assignment for the structure and disfavors 1- or 0-. The Born cross section times the DD* branching fraction of the Zc(3885) is measured to be σ(e+ e- → π± Zc(3885)∓)×B(Zc(3885)∓ → (DD*)∓) = (83.5±6.6(stat)±22.0(syst))   pb. Assuming the Zc(3885) → DD* signal reported here and the Zc(3900) → πJ/ψ signal are from the same source, the partial width ratio (Γ(Zc(3885) → DD*)/Γ(Zc(3900) → πJ/ψ)) = 6.2±1.1(stat)±2.7(syst) is determined.

Supplemental Content

Full text links

Icon for American Physical Society
Loading ...
Support Center