Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Spectrosc. 2014;68(2):238-44. doi: 10.1366/13-07042.

In situ pulse diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) mass spectrometry study of the water-gas shift reaction on nickel(II) oxide-zinc(II) oxide catalysts.

Author information

1
Army Academy ROC, Department of General Education, Taoyuan, 32093 Taiwan, Republic of China.

Abstract

The water-gas shift (WGS) reaction has been studied by pulsing carbon monoxide (CO) into a steady-state water (H2O)-Ar flow over nickel(II) oxide-zinc oxide (NiO-ZnO) catalysts using in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) coupled with a mass spectrometer method using the pulse technique (in situ pulse DRIFTS-MS) for different flow rates (gas hourly space velocity [GHSV] of 24,000-72,000 h(-1)) and reaction temperatures (250-350 °C). The results obtained from the in situ pulse DRIFTS-MS revealed that there are two types of water adsorption bands on the surface of the catalyst: (i) molecular adsorption (infrared [IR] bands in the 2500-3600 cm(-1) range and at 1640 cm(-1)), and (ii) dissociative adsorption at 3700 cm(-1), where carboxyl bands are formed at 1461 and 1368 cm(-1) and the gas-phase CO is adsorbed at 2187 and 2111 cm(-1) on the surface of the catalyst. After using a GHSV = 24,000 h(-1) H2O/Ar flow, we probed the existence of two active intermediates via the formation of two hydrogen production peaks. The products of hydrogen gas (H2) and carbon dioxide (CO2) had two pathways: the redox process and the associative process via the intermediate of the carboxyl group. In situ pulse DRIFTS-MS proves to be an effective approach for studying the nature of adsorbed species on the catalyst surface and the nature of the reaction product.

PMID:
24480281
DOI:
10.1366/13-07042
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center