Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2014 Mar 7;6(5):2840-6. doi: 10.1039/c3nr06141h. Epub 2014 Jan 27.

Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application.

Author information

Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea.


This study describes the synthesis of zinc oxide nanoparticles (ZnO NPs) using a microfluidic system. A continuous and efficient synthetic process was developed based on a microfluidic reactor in which was implemented a time pulsed mixing method that had been optimized using numerical simulations and experimental methods. Numerical simulations revealed that efficient mixing conditions could be obtained over the frequency range 5-15 Hz. This system used ethanol solutions containing 30 mM sodium hydroxide (NaOH) or 10 mM dehydrated zinc acetate (Zn(OAc)2) under 5 Hz pulsed conditions, which provided the optimal mixing performance conditions. The ZnO NPs prepared using the microfluidic synthetic system or batch-processed system were validated by several analytical methods, including transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), UV/VIS NIR and zeta (ΞΆ) potential analysis. Bulk-heterojunction organic photovoltaic cells were fabricated with the synthesized ZnO NPs to investigate the practicability and compared with batch-process synthesized ZnO NPs. The results showed that microfluidic synthesized ZnO NPs had good preservability and stability in working solution and the synthetic microfluidic system provided a low-cost, environmentally friendly approach to the continuous production of ZnO NPs.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center